
Computer Networks 79 (2015) 30–38
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet

 
 

 

Distributed algorithms in wireless sensor networks: An
approach for applying binary consensus in a real testbed
F

http://dx.doi.org/10.1016/j.comnet.2014.12.011
1389-1286/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: nalnakhala@qu.edu.qa (N. Al-Nakhala), ryan.riley@

qu.edu.qa (R. Riley), tarekfouly@qu.edu.qa (T. Elfouly).
.i
rNoor Al-Nakhala ⇑, Ryan Riley, Tarek Elfouly

Qatar University, Department of Computer Science and Engineering, Doha, Qatar
a r t i c l e i n f o

Article history:
Received 6 February 2014
Received in revised form 15 October 2014
Accepted 17 December 2014
Available online 7 January 2015

Keywords:
Binary consensus
TinyOS
Wireless sensor networks
ar
aF
il
ea b s t r a c t

In this work, we realize the binary consensus algorithm for use in wireless sensor
networks. Binary consensus is used to allow a collection of distributed entities to reach
consensus regarding the answer to a binary question and the final decision is based on
the majority opinion. Binary consensus can play a basic role in increasing the accuracy
of detecting event occurrence. Existing work on the binary consensus algorithm focuses
on simulation of the algorithm in a purely theoretical sense. We fill the gap between the
theoretical work and real hardware implementation by modifying the algorithm to
function in wireless sensor networks. This is achieved by adding a method for nodes to
determine who to communicate with as well as adding a heuristic for nodes to know when
the algorithm has completed. Our implementation is asynchronous and based on random
communication. In this work, we expand our previous implementation to test it on 139
hardware testbed. Moreover, we are able to minimize the convergence time achieving
ultimate results. Our implementation show successful results and all the motes are able
to converge to the expected value in very short time.

� 2015 Elsevier B.V. All rights reserved.
.

w
w
w

1. Introduction

Algorithms for cooperative decision making have
received significant attention in recent years. In these algo-
rithms, a network of agents seeks to reach a decision coop-
eratively and ensure that all nodes in the network know the
final decision. The consensus problem comes when the
agents should agree on a certain value. One such algorithm
in this area is binary consensus [1,2]. Under binary consen-
sus, the nodes in the network must simply agree on whether
a statement is TRUE or FALSE. For example, a network of
nodes capable of measuring temperature could use binary
consensus to answer the question ‘‘Is the temperature
greater than 80 �C?’’ in order to help detect a fire in a
building.
In the binary consensus problem, each node has an ini-
tial state of either 0 or 1, and the nodes should decide
which one of these values are correctly held by the major-
ity of the nodes in the network.

The existing algorithm for binary consensus has two lim-
itations. First, it does not specify how nodes find partners to
run the algorithm with. Second, it does not provide a way
for an individual node to determine when consensus has
been reached. In order to implement the algorithm in a real
distributed network, these limitations must be overcome.

Wireless sensor networks consisting of small, embed-
ded devices, called motes, provide an excellent platform
for binary consensus. Motes contain sensors that can be
used to collect data about their environments, and can
communicate with each other wirelessly [3]. Due to limita-
tions regarding their size and power, sensor motes are
computationally weak and should limit the number of
packets they send. When data is transmitted by the sensor

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2014.12.011&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2014.12.011
mailto:nalnakhala@qu.edu.qa
mailto:ryan.riley@qu.edu.qa
mailto:ryan.riley@qu.edu.qa
mailto:tarekfouly@qu.edu.qa
http://dx.doi.org/10.1016/j.comnet.2014.12.011
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet
http://www.FaraFile.ir


N. Al-Nakhala et al. / Computer Networks 79 (2015) 30–38 31
motes in the network, more energy is consumed in the pro-
cess of transmission than the process of computation [4].

Previous research focused only in the theoretical side of
the binary consensus without going further to implement
this algorithm in real sensor motes. The binary consensus
algorithm can be effectively used in wireless sensor motes
in numerous fields to increase the accuracy of detecting
certain decisions or events.

To the best of our knowledge, there is no exiting work
that deals with implementing binary consensus algorithm
in real world scenario. Our goal in this work is to study bin-
ary consensus algorithm further by implementing it in real
world implementation.

In [5] we implemented and tested our algorithm in real
wireless sensor motes by applying it in 11 sensor motes,
and further support our results with more motes and
topologies in a wireless mote simulator. Our previous
results of convergence time showed that convergence
speed depends on the following factors: the topology, the
number of motes present in the network and the distribu-
tion of the initial 0 and 1 states. In this paper, we propose a
set of modifications to binary consensus that will allow it
to operate in the context of wireless sensor motes having
the limitations described above. Our modifications consist
of changing how motes decide who to communicate with
and also adding a heuristic to help motes estimate when
consensus has been achieved. We have implemented our
algorithm in a set of TinyOS based sensor motes and veri-
fied our algorithm functions both in hardware and in sim-
ulation. Moreover, we tested our implementation in a large
sensor network consists of 139 motes.

 
 

 

a

.F

2. Background

In this section we will give a brief overview of binary
consensus and potential applications of it to wireless sen-
sor networks (WSNs). We assume the reader is familiar
with WSNs, and focus on binary consensus here.
w
w
w2.1. Binary consensus

There are a variety of algorithms that are meant to
allow a network of distributed nodes to reach consensus
in a computation. In this work, we are specifically con-
cerned with the problem of binary consensus [6,7], where
each node in the network holds one of two states and the
algorithm allows all nodes to learn which state is held by
the majority of nodes. There are many applications of such
an algorithm, such as determining if the majority of sen-
sors in a network have observed a certain event. Two
strengths of binary consensus are that it is guaranteed to
come the correct conclusion [7], and that there is an
upper-bound on the time to convergence [1].

Under binary consensus, nodes in the network start
with their initial state and then update their state with
each other based on an updating protocol. Convergence
occurs when all nodes agree on the majority opinion.
When two nodes communicate and run the updating pro-
tocol, they compare current states and then each assume a
new state based on what they have seen. While the
.i
r

algorithm is running a node may be in one of four states,
which can be described informally as:

1. 0 – The node believes the majority opinion is most
likely false.

2. e0 – The node believes the majority opinion might be
false.

3. e1 – The node believes the majority opinion might be
true.

4. 1 – The node believes the majority opinion is most
likely true.

The updating protocol, as quoted from [1], is as follows:

Each node is in one of four states: 0; e0; e1, and 1. The
states satisfy the following order 0 < e0 < e1 < 1. At
each contact of a pair of nodes, their respective states
x and y (without loss of generality) ordered such that
x 6 y, are updated according to the following mapping
ðx; yÞ# ðx0; y0Þ defined by
ra
F
il
eð0; e0Þ ! ðe0;0Þ

ð0; e1Þ ! ðe0;0Þ
ð0;1Þ ! ðe1; e0Þ
ðe0; e1Þ ! ðe1; e0Þ
ðe0;1Þ ! ð1; e1Þ
ðe1;1Þ ! ð1; e1Þ
ðs; sÞ ! ðs; sÞ; for s ¼ 0; e0; e1;1:

Convergence occurs when all nodes have states
2 f0; e0g or 2 fe1;1g. This means that if all nodes in the net-
work have state 0 or e0, then the network has converged
and the majority of nodes initially held the value 0. Like-
wise, if all nodes in the network have state e1 or 1, then
the network has converged and the majority of nodes ini-
tially held the value 1.

Consider the following theoretical example of how the
binary consensus algorithm works, independent of the
implementation methodology. Assume that there is a net-
work with 4 nodes, 1, 2, 3 and 4 having initial states of
(1; 0; 0; 0) respectively as shown in Fig. 1(a). The first inter-
action happens between nodes 1 and 2 and the state of
node 1 becomes e0 while the state of node 2 will be e1.
(This is according to the rules given above.) So the new
sequence of states will be (e0; e1; 0; 0). Next, the second
interaction is between nodes 3 and 4 as shown in
Fig. 1(b); they communicate and nothing happens since
they both hold the same state. Now, nodes 1 and 2 commu-
nicate again as depicted in Fig. 1(c), and their states are
swapped leading to (e1; e0; 0; 0). Nodes 2 and 3 communi-
cate as illustrated in Fig. 1(d) and also swap their states:
(e1; 0; e0; 0). Finally, node 1 communicates with node 2 as
shown in Fig. 1(e) leading to the converged states
(0; e0; e0; 0) illustrated in Fig. 1(f). We consider this set of
states converged because all nodes have value 0 or e0. This
means that the majority of nodes initially held state 0.

It is important to note that even though convergence
has occurred, the nodes continue to communicate and
exchange states. This is because individual nodes do not

http://www.FaraFile.ir


a

il
e.
ir

1 0

00

Node1 Node2

Node4Node3

First Interaction

e0 e1

00

Node1 Node2

Node4Node3

Second Interaction

e1 e0

00

Node1 Node2

Node4Node3

Fourth Interaction

e1 0

0e0

Node1 Node2

Node4Node3

Fifth Interaction

Node1 Node2

Node4Node3

0 e0

0e0

(a) (b)

e0 e1

00

Node1 Node2

Node4Node3

Third Interaction

(c)

Network Converged

(e)(d)
(f)

Fig. 1. Example of binary consensus algorithm functionality.

1 The astute reader will note that this is a state transition diagram with
the word ‘‘stage’’ substituted for ‘‘state’’. This is to prevent confusion
between the state of the mote (meaning 0; e0; e1; or 1) and the stage of the
algorithm the mote is currently running.

32 N. Al-Nakhala et al. / Computer Networks 79 (2015) 30–38

 
 

 

w
w
w
.F

have global knowledge of the states of all others, and
therefore cannot be certain whether convergence has
occurred. Absolute certainty regarding convergence would
require global knowledge.

2.2. The usage of binary consensus in real world applications

There are several applications in which the binary con-
sensus algorithm may be used to accomplish a certain
decision.

Consider a scenario of having a network of sensors
capable of sensing temperature in a large area such as a
stadium, and using that network to control the air condi-
tioning of that area. The temperature may vary in different
parts of the area, and you would only want to adjust the AC
when a majority of nodes believe the temperate is above a
certain threshold. Binary consensus could be applied to
such a network in order to accomplish this goal.

Another application could be the detection of gas leaks
in a gas processing or storage facility. In such facilities
small, transient leaks may be acceptable while people are
working on the equipment and small amounts of gas is
released. If a network of gas sensors was deployed in a
small area, one or two of them detecting gas may be a
non-issue, while if the majority detect gas then a larger
gas leak is certainly occurring. Binary consensus could be
used to determine the majority opinion of these sensors.

3. Design and implementation

While the binary consensus algorithm described in [1]
and Section 2.1 provides a complete specification of how
nodes should update their states, it leaves two important
things unstated which are vital for implementing the
ra
Falgorithm in WSNs. First, the algorithm does not discuss

how individual nodes find a partner to update states with.
Second, the algorithm does not provide a method for indi-
vidual nodes to determine when convergence has
occurred. In this section we will discuss modifications to
the binary consensus algorithm that will allow us to pro-
vide both of these pieces of missing functionality.

3.1. Mote-to-mote communication

The motes that are part of a WSN do not, by default,
have any awareness of the identities of any other motes
in the network. Motes learn the identities of those around
them by simply broadcasting and listening to messages. In
this case, how does a mote determine who to communicate
with and update its state? In our solution motes will ran-
domly broadcast to their neighbors (other motes within
range of receiving their wireless packets) in order to find
partners.

Fig. 2 illustrates a stage transition diagram of our com-
munication algorithm.1 Table 1 describes the types of pack-
ets sent and received during the algorithm. Our stages can
be described as follows:

� Stage 0: After initialization, all motes start at Stage 0.
During this stage, a mote will determine its initial state
(0 or 1) and set a random timer that will decide when
the mote will wake-up and broadcast information to
its neighbors. If a mote is still in this stage when that

http://www.FaraFile.ir


a

e.
ir

Fig. 2. Stage transition diagram of the communication algorithm.

Table 1
Packets used during mote-to-mote communication. M1 and M2 are motes
in the communication.

Packet Payload Description

P1 M1
state

M1 sends this packet to all motes in range

P2 M2
state

M2 replies to M1 by sending this packet

P3 – M1 sends this packet to M2 in order to confirm
that its state update was successful

N. Al-Nakhala et al. / Computer Networks 79 (2015) 30–38 33

 
 

 

w
w
w
.F

timer fires, then it will transition to stage 3. If, instead, it
receives a P1 packet from another mote, then it will
transition to stage 1.
� Stage 1: After receiving P1, the mote will reply with a P2

packet containing its current state. This signifies to the
sender that this mote is available to exchange state
information. After sending P2 the mote will wait for a
reply. During this time the mote will ignore any packets
from other motes. After receiving a reply, the mote tran-
sitions to stage 2. If no reply is received after a suitable
timeout, the mote returns to stage 0.
� Stage 2: When the mote receives P3, it will update its

state using the rules previously described. At this stage
both motes in the communication have updated their
states. After this, the mote is free to communicate with
another mote, and as such starts a timer and also waits
for a potential P1 packet, just as in stage 0.
� Stage 3: In the event a mote has not been contacted by

others, then eventually its own random timer will fire.
In this case, the mote transitions to stage 3. After the
timer fires, the mote will broadcast P1 and will wait
to receive a packet of type P2. Once it receives it, it
moves on to stage 4.
� Stage 4: After receiving P2, which contains the other

mote’s current state, the mote will update its state
using the rules previously described. Next, it will send
ra
F
ilP3. After this, the mote is free to communicate with

another mote, and as such starts a timer and also waits
for a potential P1 packet, just as in stage 0.

Fig. 3 illustrates a simple example of how the motes
communicate to update their states. Assume that we have
3 motes: 1, 2, and 3. All motes are initially in stage 0, wait-
ing to either receive a packet or for their individual timers
to fire. After a time, the timer on mote 1 fires and mote 1
broadcasts P1 to all its neighbors. Both mote 2 and mote
3 receive the broadcast. Mote 2 receives P1 first, and sends
P2 in reply. Mote 1 receives the reply and updates its state
accordingly. Shortly after that, mote 3 also sends P2, how-
ever since mote 1 received mote 2’s reply first, it drops the
reply of mote 3. Next, Mote 1 sends P3 to mote 2, who
receives it and updates its state as well.

Note that we have not discussed packet loss in our
example. Packets P2 and P3 are automatically acknowl-
edged and resent if lost. We make use of the acknowledg-
ment features built into the radio unit of our sensor motes
in order to accomplish this, and we leave the details out of
our description of the protocol for the sake of clarity. P1 is
not acknowledged because it is a broadcast packet.

3.2. Estimating convergence

In standard binary consensus, nodes continue to run the
algorithm even after convergence has occurred. This is
because individual nodes have no way of knowing that
the algorithm has converged. From an individual node’s
perspective, the algorithm does not have a stop condition.

In a wireless sensor network, this is unacceptable. In
order to save power, it is vital that sensor motes know
when to stop communicating. As such, we have designed
a tunable heuristic value called N that plays important role
in estimating convergence. Whenever a mote updates its
state, it also keeps track of the last N states that it has held.
If the last N states 2 f0; e0g or 2 fe1;1g, then the mote

http://www.FaraFile.ir


a

ir

Broadcast P1 containing mote 1 current
state

tnoc2PgnidnesybylpeR

etomgninia 2 current

state

Reply by sending P3

Reply by sending P2 containing mote 3 current state

Broadcast P1 containing mote 2 current
state

Fig. 3. Simple example of mote communication state updates.

34 N. Al-Nakhala et al. / Computer Networks 79 (2015) 30–38

 
 

 

.F

estimates that convergence may have occurred. In this sit-
uation the mote will disable the timer it uses to randomly
wake-up and broadcast P1. In the event the network has
actually converged, very quickly all motes will disable their
timers and communication will cease. In the event the
mote was incorrect; however, and the network has not
converged, then the mote is still able to respond to P1
packets it receives and participate. If, during one of these
responses, it goes through a significant state change, it will
reactivate its timer. Similarly, if after convergence a mote
changes its state, it will broadcast its new state and other
motes who receive the broadcast packet will reactivate
their timers and the communication will start again.

During experimentation, for each network type a suit-
able N was manually chosen which ensured the network
converged properly. Choosing the value of N is critical
and affects the convergence time. If N is very high, then
unnecessary extra packets will be sent in the network
and this will increase the convergence time and consume
energy. If it is too low, then convergence could occur pre-
maturely and incorrectly.
Table 2
Convergence time and N values for 139 hardware motes.

Motes T1 (s) T2 (s) T3 (s) T4 (s) T5 (s) AVG (s) N

25 30 30 35 35 37 33.4 10
50 27 28 30 31 32 29.6 10
75 24 24 26 27 27 25.8 10

100 23 23 27 27 28 25.6 10
125 27 29 29 30 31 29.2 10
139 35 37 40 42 43 39.4 10
w
w
w4. Experiments

We have implemented our algorithm in [5] using IRIS
family of sensor motes from the MEMSIC corporation
[8,9]. We used a development version of TinyOS (between
versions 2.1.1 and 2.1.2). Our implementation required
about 400 lines of nesC code, including appropriate com-
ments. On the mote itself, our application required 15 kby-
tes of ROM storage and 600-bytes of RAM at runtime.

We then tested our implementation in both a large,
hardware testbed as well as in the TinyOS SIMulator TOS-
SIM. In this section we will discuss our testing methodolo-
gies and results.

4.1. Testing the algorithm in a larger sensor network

We tested our algorithm in a large network of 139
motes. In order to achieve this, we used the wireless sensor
network testbed provided by Indriya [10]. Indriya is a
ra
F
il
e.three-dimensional wireless sensor network deployed

across three floors. The status of each mote during the tests
was recorded through a serial port attached to each mote
in the testbed. This allows us to run our wireless protocol
while still logging the activity of all the motes.

We were able to minimize the convergence time reach-
ing 139 motes. As in our algorithm the motes communica-
tion is based on random timer, we tweaked the random
timer by minimizing it to the best value that will guarantee
that the convergence will occur. This also affected the tun-
able convergence heuristic value N (described previously
in Section 3.2) that is used to estimate the convergence.
We ran several tests in order to choose the best value for
the random timer and for choosing the best value for N.

We tested the algorithm for 25, 50, 75, 100, 125 and 139
motes as shown in Table 2. The initial states 0; 1 were dis-
tributed randomly so that the majority value has a per-
centage of 60%. The motes during the tests were chosen
carefully, so that the network includes motes from all three
floors. The value for the tunable convergence heuristic, N
was also experimented with. During the tests we were able
to minimize the heuristic value N, which indicates conver-
gence, to N = 10 for 139 motes. In these tests we general-
ized the N value for 25, 50, 75, 100, 125 and 139 to be 10
since this value is best fit for 139 motes. This led to having
a convergence time as shown in Table 2 reaching on aver-
age of T ¼ 39:4 s when the number of motes is 139. We
also found that the convergence time and the heuristic
value N depend on the random timer that we used in our
design. When minimizing the random timer, the value N
will be minimized and both (the random timer and N
value) will result on minimizing the convergence time.

http://www.FaraFile.ir


0

2000

4000

6000

8000

10000

12000

14000

16000

18000

25 50 75 100 125 139

N
um

be
r o

f P
ac

ke
ts

 S
en

t

Number of Motes

Without lost packets
With lost packets

N. Al-Nakhala et al. / Computer Networks 79 (2015) 30–38 35
Fig. 4 depicts the convergence time results. While one
might expect that convergence time would uniformly
increase as the number of motes increases, instead the
graph has an convex shape that shows that convergence
time initially decreases as the number of motes increase
before then beginning to increase rapidly. The reason for
this has to do with the density of the motes in the network.
A small number of motes, such as 25, scattered across such
a large area is not a very dense network. This means that it
will take longer for sufficient mixing of initial states to
occur and cause convergence. At around 100 motes, the
network reaches sufficient density and adding additional
motes causes the expected rise in convergence time.

 
 

 

Fig. 5. Total number of packets sent to reach convergence.
4.2. Packets sent

Fig. 5 shows the numbers of packets transmitted within
the network when implementing our algorithm on 25, 50,
75, 100, 125 and 139 motes with and without considering
lost packets. As can be seen, the number of packets grows
linearly with respect to the number of motes, independent
of the density or convergence time.
a

.F

4.3. Simulation

In order to test our algorithm with a variety of specific
topologies, we also made use of the TinyOS SIMulator
(TOSSIM) to gather additional results. TOSSIM simulates
motes running the TinyOS platform, complete with net-
work functionality and packet loss.

When simulating packet loss, TOSSIM takes as input a
noise model as well as signal strength between motes.
For our experiments we made use of the TOSSIM supplied
meyer-heavy noise model originally derived from experi-
ments done at the Meyer Library at Stanford University.
The model includes hardware noise floor readings and
points of interference [11]. For the signal strength between
motes we made a simplifying assumption of �55 dB for all
connections.
w
w4.4. Max-3 neighbors topology vs. ring topology

We tested and simulated both max-3 neighbors and
ring topologies for 5, 7, 11, 20 and 30 motes. Samples of
the topologies can be found in Fig. 6.
w

0

5

10

15

20

25

30

35

40

45

25 50 75 100 125 139

Ti
m

e 
in

 S
ec

on
ds

Number of Motes

33.4
29.6

25.8 25.6
29.2

39.4

Fig. 4. Average convergence time for large hardware motes.
ra
F
il
e.
irThree trials (signified T1–T3 in the table) were per-

formed for each configuration of motes. Each trial con-
tained a different distribution of initial states (either 1 or
0) for the motes. In T1, initial states were distributed in
such a way that if a mote had a value of 0 then its neighbor
would have a value of 1. This configuration is close to opti-
mal for the algorithm, as the mote will directly communi-
cate with the neighbor motes that hold the opposite state
and the majority value will be spread through the network
quickly. In T3, all 0s were concentrated to one side of the
network while the 1s were concentrated to the other. This
mimics a worst case scenario. In both cases, the number of
1s in the network is very close (within 1 or 2) to the num-
ber of 0s in the network. T2 made use of distributions that
slowly shift from T1 to T3. (T1 is the ‘‘easiest’’ distribution,
T2 is slightly more difficult, etc.).

The max-3 section of Table 3 shows the results for the
max-3 neighbors topology. Fig. 6a shows a max-3 neigh-
bors topology with various ‘‘areas’’ labeled. As would be
expected, as the number of motes increases so does the
convergence time as well as the required N. In T1, the dis-
tribution of 0’s and 1’s are spread uniformly across the net-
work, and the convergence time is fast and the required N
value is low. For T5, however, entire ‘‘cells’’ of motes (such
as 1, 2 and 3 in the figure) are all assigned the same state,
with adjacent cells having opposite assignments. In this
case, the motes require more time to converge and have
a higher N value.

The Ring section of Table 3 shows the results for the
ring topology. For small numbers of motes (5, 7 and 11)
the convergence time as well as the N value are better than
in max-3 neighbors. However, as the number of motes
increases, the convergence time as well as the value of N
increase rapidly as well. In the worst case, reaching
t ¼ 123 s for 30 motes. Much like the previous experiment,
the initial states also impact convergence time. For exam-
ple, with 20 motes, the difference in time between T1
(where all initial states were alternated among neighbors)
and T3 (where the left and right halves of the rings had the
initial states concentrated) was around 250%.

Fig. 7 compares the convergence time between max-3
neighbors and ring topologies. The figure shows that for
small numbers of motes (5, 7 and 11) the convergence time
as well as the N value is better in ring topology than in
max-3 neighbors topology. For larger numbers of motes;

http://www.FaraFile.ir


w
w
w
.F
a

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

1 2 3

te
xt

te
xt

te
xt

6 5

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

te
xt

7

4

8 9

(a) Max 3 neighbors topology

tex
t

tex
t

tex
t

tex
t

tex
t

tex
t

tex
t

tex
t

tex
t

tex
t

tex
t

(b) Ring topology

Fig. 6. Sample topologies simulated in TOSSIM.

Table 3
Convergence time and N values for simulation experiments.

Motes T1 (s) T2 (s) T3 (s) AVG (s) N

Max-3
5 4.2 4.7 5.8 4.9 7
7 8.4 9.5 11.6 9.8 10

11 8.2 14.4 16 12.9 10
20 14.4 18.6 23.9 19 15
30 20.9 26.9 32.5 26.9 20

Ring
5 4.1 4.7 4.9 4.6 5
7 4.6 5.5 6 5.4 5

11 9.1 12.6 14.3 12 7
20 32.1 51.2 76.2 52.5 40
30 32.7 59.6 123 89 50

36 N. Al-Nakhala et al. / Computer Networks 79 (2015) 30–38

 
 

 

le
.i
r

however, this advantage is lost. In this case, max-3 neigh-
bors converges faster and increases slowly and has a smal-
ler N value than ring. This is likely due to the fact that as
the ring becomes large, it takes significantly more time
for state changes to propagate completely around the ring.
Which results in a rapid increasing in convergence time for
ring topology when the number of motes increases to more
than 12.

This is the because the shortest path between two
motes sitting in opposite side of the ring topology grows
with complexity of OðNÞ (with a constant of roughly 1

2)
while the shortest of max-3 neighbors grows with com-
plexity Oð

ffiffiffiffi

N
p
Þ. As such, there is an intersection point on

the graph at roughly 11 motes where the shortest path
for max-3 neighbors will be less than that of ring, and
hence the convergence time is lower as well.

Beyond just convergence time, the value for the tunable
convergence heuristic, N, was also experimented with. In
our testing we observed that a suitable value for N was
related to both the size of the network and the initial dis-
tribution of 1 and 0 states within the network. For each
network configuration, a suitable N was experimentally
chosen which ensured the network converged properly.
ra
F
i

5. Related work

There is a plethora of related work on binary consensus
[7,1,12,6]. Mostefaoui et al. [12] proposed an algorithm in
asynchronous systems with crash failures. In their algo-
rithm, every process runs a series of binary consensus sub-
routines sequentially to solve multivalued consensus.
Binary consensus is deployed as distributed averaging on
a network. The applications of this algorithm include coor-
dination of autonomous agents, estimation, and distrib-
uted data fusion on ad hoc or social networks. In [7], the
algorithm is proven to converge to the correct solution
with probability 1. In [1] the authors derive an upper-
bound on the expected convergence time for a variety of
network topologies, including complete graph, star, and
Erdos–Renyi random graphs. In [2] the authors proposed
a method of information processing aimed at improving
consensus convergence over noisy channels using Gauss-
ian noise models.

There is a large amount of existing work on routing pro-
tocols [13–15] in WSNs. In theory, these protocols could be
0

20

40

60

80

100

5 7 11 20 30

Ti
m

e 
in

 S
ec

on
ds

Number of Motes

Ring

4.9
9.8 12.9

19.0
26.9

Max-3 Neighbors

4.6 5.4
12.0

52.5

89.0

Fig. 7. Comparison of average convergence time between max-3 neigh-
bors and ring topologies.

http://www.FaraFile.ir


i

N. Al-Nakhala et al. / Computer Networks 79 (2015) 30–38 37
used to create the effect of a fully connected topology and
allow a different design to our algorithm. This paper is con-
cerned with developing a binary consensus algorithm that
functions without requiring the complexity of a full rout-
ing protocol. In future work, an alternative algorithm mak-
ing use of a full routing protocol could be compared to this
one in terms of energy efficiency and accuracy.

Most similar in concept to this work, Kenyeres et al.
[16] performed a hardware implementation of the average
consensus algorithm proposed in [17]. In average consen-
sus nodes are attempting to converge on the average of
all values held by nodes. They detect consensus by defining
an accuracy parameter and declaring a counter that is
increased whenever a mote’s value is changed. They
assume that if the value of the mote is changed in small
intervals less than the defined accuracy parameter, or if
the value is the same 3 times, then convergence has been
achieved. Their work makes a crucial simplifying assump-
tion that ours does not: They assume that the network
topology is fully connected (every mote can communicate
directly with every other mote). This assumption greatly
simplifies their algorithm, but limits the size of the net-
work it can support. Moreover, their algorithm is synchro-
nous and forces the update to be synchronous which limits
the usage of their algorithm.

 
 

 

a

w
w
w
.F

6. Discussion

In this section we will discuss the factors related to con-
vergence time, applicability of our work to other distrib-
uted algorithms, and alternative implementation ideas.

In [5] we found that convergence speed depends on the
topology type, the number of motes present in the network
and the distribution of the initial 0 and 1 states. In this
study we found that the convergence time depends on
the network density as well. Convergence occurs more
quickly in dense networks than in sparse networks. This
is due to the fact that when the network gets more dense,
the number of links between the motes increases, meaning
that each mote will have a larger number of neighbors. In
this situation, the distance between motes on opposite
sides of the network decreases, meaning less state
exchanges are required for states to propagate completely
inside the network, hence lowering the time to
convergence.

While the algorithm described in this work is specific to
binary consensus, a number of the principals used in its
design would apply to other cooperative decision making
algorithms as well. Distributed average consensus [18],
for example, follows a similar model to binary consensus
in that it involves individual nodes communicating with
each other and updating state. As such, our approach of
communicating with random neighbors would be applica-
ble. In addition, it is important to note that binary consen-
sus, as a primitive, can be used to solve other problems
such as multivalued consensus [12]. This means that our
existing algorithm can be easily expanded to solve those
types of problems as well.

This work is not primarily concerned with minimizing
the number of packets sent (and hence energy consump-
r

tion), but there are other approaches that could be used
to try and further optimize it. One approach is to organize
motes into clusters in order to minimize the number of
motes involved in the binary consensus exchange. While
our own related work in this area does indeed reduce the
number of packets sent [19], it does not consider the over-
heard of a distributed clustering algorithm, which would
be non-trivial. Another idea is to incorporate a formal
transmission schedule with time sharing in order to mini-
mize the number of lost packets seen in Fig. 5. In [16]
TDMA was used to this end, but because scheduling was
done on the level of the entire network, this would greatly
increase the time needed for convergence in our approach
as the network increases on size. Proper application of time
sharing, therefore, would need to break the network up
into smaller, independent regions and schedule packet
transmission within them.
ra
F
il
e.7. Conclusion

This work represents a new starting point for a real
implementation of one of the cooperative algorithms in
wireless sensor network which is the binary consensus
algorithm. The concept of binary consensus can be used
in real life applications in different fields to increase the
accuracy of a certain decision. We have adapted the binary
consensus algorithm for use in wireless sensor networks.
This is achieved by specifying how motes find partners to
update state with as well as by adding a heuristic for indi-
vidual motes to determine convergence. In this work, we
were able to minimize the convergence time. We evalu-
ated our algorithm successfully in 139 hardware motes
and the network converged in very short time compared
to our previous results in [5]. The results also showed that
when the network is getting more dense the convergence
time will be minimized. It also showed that the conver-
gence speed depends on the number of motes presented
in the network. Our results in this work completed our pre-
vious results in [5]. During the experiments none of the
motes failed and our algorithm converged correctly. In tra-
ditional binary consensus, individual nodes do not have a
stop condition, meaning nodes continue to transmit even
after convergence has occurred. In WSNs however, this is
unacceptable since it will consume power. So in order to
save power sensor motes should stop the communication
when the whole network converges. For that reason we
have designed a tunable heuristic value N that will allow
motes to estimate when convergence has occurred. The
hardware as well as the simulation results show that the
convergence speed depends on the topology type, the
number of motes present in the network, and the distribu-
tion of the initial 0 and 1 states. Our simulation results
showed that the max-3 neighbor topology converges faster
than the ring topology for networks with more than 12
motes, while the ring topology converges faster when the
number of motes is less than 12. Convergence speed
depends on the topology type, the number of motes pres-
ent in the network and the distribution of the initial 0
and 1 states and the network density. Dense networks con-
verge faster than sparse networks.

http://www.FaraFile.ir


a

38 N. Al-Nakhala et al. / Computer Networks 79 (2015) 30–38
w
w
w
.F

Acknowledgments

This publication was made possible by the support of
the NPRP Grant 09-1150-2-448 from the Qatar National
Research Fund. The statements made herein are solely
the responsibility of the authors. We would like to thank
the School of Computing, at the National University of Sin-
gapore, for providing the Indriya testbed used in our
experiments.

References

[1] M. Draief, M. Vojnovic, Convergence speed of binary interval
consensus, SIAM J. Control Optim. 50 (3) (2012) 1087–1109.

[2] Y. Ruan, Y. Mostofi, Binary consensus with soft information
processing in cooperative networks, in: Proceedings of the IEEE
Conference on Decision and Control (CDC 2008), IEEE, 2008, pp.
3613–3619.

[3] Y. Choi, Y. Jeon, S. Park, A study on sensor nodes attestation protocol
in a wireless sensor network, 2010 The 12th International
Conference on Advanced Communication Technology (ICACT), vol.
1, IEEE, 2010, pp. 574–579.

[4] L. Yong-Min, W. Shu-Ci, N. Xiao-Hong, The architecture and
characteristics of wireless sensor network, International
Conference on Computer Technology and Development, 2009,
ICCTD’09, vol. 1, IEEE, 2009, pp. 561–565.

[5] N. Al-Nakhala, R. Riley, T. Elfouly, Binary consensus in sensor motes,
in: 9th IEEE International Wireless Communications and Mobile
Computing Conference (IWCMC 2013), IEEE, Cagliari, Italy, 2013.

[6] E. Perron, D. Vasudevan, M. Vojnovic, Using three states for binary
consensus on complete graphs, in: Proceedings of the Annual Joint
Conference of the IEEE Computer and Communications Societies
(INFOCOM 2009), IEEE, 2009, pp. 2527–2535.

[7] F. Benezit, P. Thiran, M. Vetterli, Interval consensus: from quantized
gossip to voting, in: Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP 2009), IEEE,
2009, pp. 3661–3664.

[8] CrossBow Technology Inc., IRIS Wireless Measurement System
Datasheet. <http://www.xbow.com/Products/Productpdffiles/
Wirelesspdf/IRISDatasheet.pdf> (last accessed 23.12.12).

[9] Crossbow Technology Inc., Professional Kit for Wireless Sensor
Networks. <http://www.xbow.com> (last accessed 23.12.2).

[10] M. Doddavenkatappa, M.C. Chan, A. Ananda, Indriya: A low-cost 3d
wireless sensor network testbed, in: Testbeds and Research
Infrastructure, Development of Networks and Communities,
Springer, 2012, pp. 302–316.

[11] TinyOS Community Wiki, Tossim Simulator. <http://docs.tinyos.net/
tinywiki/index.php/TOSSIM> (last accessed 23.12.12).

[12] A. Mostefaoui, M. Raynal, F. Tronel, From binary consensus to
multivalued consensus in asynchronous message-passing systems,
Inf. Process. Lett. 73 (5–6) (2000) 207–212.

[13] K. Akkaya, M. Younis, A survey on routing protocols for wireless
sensor networks, Ad Hoc Networks 3 (3) (2005) 325–349, http://
dx.doi.org/10.1016/j.adhoc.2003.09.010. <http://www.sciencedirect.
com/science/article/pii/S1570870503000738>.

[14] L.J. Garca Villalba, A.L. Sandoval Orozco, A. Trivio Cabrera, C.J.
Barenco Abbas, Routing protocols in wireless sensor networks,
Sensors 9 (11) (2009) 8399–8421, http://dx.doi.org/10.3390/
s91108399. <http://www.mdpi.com/1424-8220/9/11/8399>.

[15] S. Singh, M. Singh, D. Singh, Routing protocols in wireless sensor
networks–a survey, Int. J. Comput. Sci. Eng. Survey (IJCSES) 1 (2)
(2010) 63–83.

 
 

 

e.
ir

[16] J. Kenyeres, M. Kenyeres, M. Rupp, P. Farkas, WSN implementation of
the average consensus algorithm, in: Proceedings of the Wireless
Conference 2011 – Sustainable Wireless Technologies (European
Wireless), VDE, 2011, pp. 1–8.

[17] R. Olfati-Saber, J. Fax, R. Murray, Consensus and cooperation in
networked multi-agent systems, Proc. IEEE 95 (1) (2007) 215–233.

[18] L. Xiao, S. Boyd, S.-J. Kim, Distributed average consensus with least-
mean-square deviation, J. Parallel Distr. Comput. 67 (1) (2007) 33–
46.

[19] N. Al-Nakhala, R. Riley, T. Elfouly, Clustered Binary Consensus in
Sensor Motes, European Wireless 2014.

Noor Al-Nakhala received the B.S. degree in
Computer Engineering and the M.S. degree in
Computing in 2012 from Qatar University. She
is a research assistant with the Computer
Science and Engineering Department at Qatar
University. Her current research interests
include Wireless Sensor Networks (WSNs),
Networking, Embedded Systems, Distributed
Systems and Intelligent Control Systems.
ra
F
ilRyan Riley received the B.S. degree in Com-

puter Engineering and the Ph.D. degree in
Computer Science in 2009 from Purdue Uni-
versity. He is an Assistant Professor of Com-
puter Science with Qatar University, Doha. His
current research interests include virtualiza-
tion technologies, malware, operating sys-
tems, and security.
Tarek Elfouly is an assistant professor at
Qatar University. He obtained his Ph.D. from
the University of Franche Comte in France. He
has several active QNRF and industry grants
related to wireless networking and security.
He has 12 years of experience in network and
security research. He published over 30
papers, more than half of them are related to
wireless sensing and network security. He has
many projects under development related to
assistive technologies for people with dis-
abilities. His projects won many national and

regional awards.

http://refhub.elsevier.com/S1389-1286(14)00465-4/h0005
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0005
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0010
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0010
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0010
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0010
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0010
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0015
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0015
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0015
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0015
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0015
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0020
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0020
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0020
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0020
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0020
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0025
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0025
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0025
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0025
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0030
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0030
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0030
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0030
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0030
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0035
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0035
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0035
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0035
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0035
http://www.xbow.com/Products/Productpdffiles/Wirelesspdf/IRISDatasheet.pdf
http://www.xbow.com/Products/Productpdffiles/Wirelesspdf/IRISDatasheet.pdf
http://www.xbow.com
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0050
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0050
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0050
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0050
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0050
http://docs.tinyos.net/tinywiki/index.php/TOSSIM
http://docs.tinyos.net/tinywiki/index.php/TOSSIM
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0060
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0060
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0060
http://dx.doi.org/10.1016/j.adhoc.2003.09.010
http://dx.doi.org/10.1016/j.adhoc.2003.09.010
http://www.sciencedirect.com/science/article/pii/S1570870503000738
http://www.sciencedirect.com/science/article/pii/S1570870503000738
http://dx.doi.org/10.3390/s91108399
http://dx.doi.org/10.3390/s91108399
http://www.mdpi.com/1424-8220/9/11/8399
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0075
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0075
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0075
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0085
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0085
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0090
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0090
http://refhub.elsevier.com/S1389-1286(14)00465-4/h0090
http://www.FaraFile.ir

	Distributed algorithms in wireless sensor networks: An approach for applying binary consensus in a real testbed
	1 Introduction
	2 Background
	2.1 Binary consensus
	2.2 The usage of binary consensus in real world applications

	3 Design and implementation
	3.1 Mote-to-mote communication
	3.2 Estimating convergence

	4 Experiments
	4.1 Testing the algorithm in a larger sensor network
	4.2 Packets sent
	4.3 Simulation
	4.4 Max-3 neighbors topology vs. ring topology

	5 Related work
	6 Discussion
	7 Conclusion
	Acknowledgments
	References


